Determinants Of Plant Species Assemblages In The Californian Marsh Plain: Implications For Restoration Of Ecosystem Function

Hem Nalini Morzaria-Luna

Department of Botany
Tidal Linkage, Tijuana Estuary, CA
• **Topographic heterogeneity** (Zedler et al. 1999)
• **Tidal inundation** (Mahall & Park, 1967)
• **Elevation** (Snow and Vince, 1984)
• **Salinity** (Callaway et al. 1990)

• **Seed availability** (Hopkins and Parker, 1984)
• **Physical disturbance** (Tolley and Christian, 1999)
• **Biotic interactions** (Callaway and Pennings 2000)
Californian salt marsh plain

- Easily sampled (<1 m height)
- No invasive plant species
- Composition constant in time
- Small species pool

Oneonta Slough, CA
Marsh plain species

Batis maritima

Frankenia salina

Jaumea carnosa

Limonium californicum

Salicornia virginica

Salicornia bigelovii

Suaeda esteroa

Triglochin concinna
General objective

Investigate the factors that determine composition and richness of marsh plain plant assemblages
Topographic heterogeneity
Species richness is greater < 1m from creek margins (Zedler et al. 1999)

Bahía de San Quintín, México
Volcano Marsh,
Bahía de San Quintín. México
~5000 hectares of wetland
Sampling scales (m2)

- 0.1
- 0.25
- 1
- 2.5
- 10

$n = 715$
Do assemblages differ in cells ± creeks?

Plot

Where ○ = Different species
Assemblages differed between cells ± creeks

Plot

- 188 unique assemblages
- 14% overlap cells with and without creeks

Where 〇 = Different species
Frequency of common assemblages

<table>
<thead>
<tr>
<th>Species</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batis</td>
<td>Creeks: 14, No creeks: 12</td>
</tr>
<tr>
<td>Frankenia</td>
<td>Creeks: 9, No creeks: 21</td>
</tr>
<tr>
<td>Jaumea</td>
<td>Creeks: 16, No creeks: 0</td>
</tr>
<tr>
<td>Limonium</td>
<td>Creeks: 14, No creeks: 23</td>
</tr>
<tr>
<td>Salicornia</td>
<td>Creeks: 9, No creeks: 21</td>
</tr>
<tr>
<td>S. bigelovii</td>
<td>Creeks: 14, No creeks: 23</td>
</tr>
<tr>
<td>Salicornia sp.</td>
<td>Creeks: 16, No creeks: 0</td>
</tr>
<tr>
<td>Triglochin</td>
<td>Creeks: 14, No creeks: 23</td>
</tr>
<tr>
<td>Suaeda</td>
<td>Creeks: 9, No creeks: 21</td>
</tr>
</tbody>
</table>
Seed availability
Planted

Friendship Marsh, Tijuana Estuary. May 2002
Friendship Marsh, Tijuana Estuary. May 2003
Salt marsh seeds:

- Tidally transported (Huiskes et al. 1995)
- Travel long distances, for long time (Koutstaal et al. 1987)
- Several species are tidally transported (Bakker et al. 2002)
Outgoing tide

Emergent seedlings

37 500
37 400

Outgoing tide

Incoming tide

Emergent seedlings

0
100
200
300
400
500

Emergent seedlings

2 200
2 100

Incoming tide

Salicornia virginica
Marsh plain
Non-marsh plain

Reference

Restored
Salicornia virginica

Seedling density

Seedlings m⁻³

Time

2000
2001
2002
Biotic interactions
Triglochin concinna

- Low biomass
- Simple canopy
- High tissue N
- Sparse cover, frequent

Negative relation with Salicornia virginica cover
Bahía San Quintin. 0.1 m² plots

\[r = 0.26 \]
\[F = 15.48, P < 0.001 \]
<table>
<thead>
<tr>
<th></th>
<th>+ Triglochin</th>
<th>- Triglochin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Light penetration</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Seedling recruitment</td>
<td>S. virginica, S. bigelovii, S. esteroa</td>
<td>minimal</td>
</tr>
<tr>
<td>Species richness</td>
<td>high</td>
<td>low</td>
</tr>
</tbody>
</table>

Phenology from Sullivan and Noe (2001)
Tukey HSD, $P = 0.05$
Nitrogen stable isotopes

<table>
<thead>
<tr>
<th>Isotopes</th>
<th>Abundance (Air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{14}N</td>
<td>99.636</td>
</tr>
<tr>
<td>^{15}N</td>
<td>0.371</td>
</tr>
</tbody>
</table>

$\delta^{15}\text{N} = \frac{^{15}\text{N} / ^{14}\text{N} \text{ sample}}{^{15}\text{N} / ^{14}\text{N} \text{ standard}} - 1 \times 1000$

Higher $\delta^{15}\text{N} =$ Higher abundance ^{15}N
Natural ^{15}N abundance marsh plants

Plant age \leq 3 years

Includes all marsh plain species except S. *bigelovii*
T. concinna
- Low biomass
- Simple canopy
- N accumulator
- Winter active

S. virginica
- High biomass
- Complex canopy
- Strong N competitor
- Summer active

Both: succulent, clonal, perennial
Hypothesis: When N was limiting and as the interaction time increased *Triglochin* would dominate and *Salicornia* biomass would be reduced
Water level treatments

![Diagram showing water height changes over time with different levels of water treatment: High, Medium, and Low. The graph indicates periods of wet and dry soil surface.]
1-year experiment

Aboveground

Salicornia

Triglochin

Biomass (g pot-1)

Water level

Low | Medium | High

Low | Medium | High
1-year experiment

Belowground

Salicornia

![Bar chart showing biomass (g pot⁻¹) for *Salicornia* at different water levels: Low, Medium, High. The chart displays a clear increase in biomass from low to high water levels.]

Triglochin

![Bar chart showing biomass (g pot⁻¹) for *Triglochin* at different water levels: Low, Medium, High. The chart shows a decrease in biomass from low to high water levels.]

Water level

- Low
- Medium
- High
Root: shoot ratio

Salicornia Triglochin

Tissue N content (mg g⁻¹)

Salicornia Triglochin

N content

$P < 0.001$

$P < 0.001$

$P < 0.001$

$P < 0.001$
Management recommendations

• Incorporate tidal creeks into restoration designs

• Plant multispecies assemblages

• Emphasize non-tidally transported species - Avoid Salicornia virginica

• Plant Triglochin to increase N retention

• Consider landscape position and surrounding vegetation
Acknowledgements

• Joy B. Zedler
• Pacific Estuarine Research Laboratory (SDSU)
• Tijuana River NERR
• Wetland Ecology lab
• J. Clemans, H. Kinmonth, S. Green
• Walnut St. Greenhouses
• P. Crump. I.C. Kaplan, J. Jorgensen, B. Larget. R. Nordheim, programming and statistical advice

• CONACyT scholarship 134519
• Earth Island Institute grant for Friendship Marsh construction.
• NOAA/NERR fellowship NA07OR0266
• Garden Club of America Coastal Wetlands Award
• NSF-IGERT grant 9870703.
• NSF DEB 9619875 and DEB 0212005