Hiroshi Maeda
Hiroshi Maeda
Hiroshi A. Maeda
Assistant Professor of Botany
Ph.D. (2006) Michigan State University
Birge B217
608-262-5833
maeda2@wisc.edu
Plant biochemistry and physiology; Aromatic amino acid biosynthesis and its regulation; Plant metabolic engineering for human health and sustainable bioenergy production
Maeda Lab

See Maeda Lab website. View CV here.

pathway figure

Research:

As sessile organisms, plants produce a tremendous array of organic compounds using CO2, underground nutrients, and sunlight energy to survive in challenging ecological niches. These plant-derived metabolites are also widely used as our food, medicine, material, and energy. Although extensive efforts are currently being made to understand plant-specific metabolic pathways, we still have a limited knowledge of how plants allocate available carbon, fixed by photosynthesis, to a variety of downstream metabolic pathways. This fundamental knowledge gap also creates a bottleneck in effective plant breeding and metabolic engineering for the improved production of useful plant-derived compounds.

My research program focuses on understanding the organization and regulatory mechanisms of the plant shikimate and aromatic amino acid pathways, which direct up to 30% of photosynthetically-fixed carbon to produce numerous plant metabolites (e.g., lignin, flavonoids, antioxidants, and alkaloids). Using a combination of biochemistry, molecular biology, genetics, and analytical chemistry, my lab specifically aims to:

  • Define the tyrosine biosynthetic pathway in plants
  • Understand the regulation of the plant shikimate pathway leading to phenylalanine and tyrosine production.
read more…

Teaching:

I will teach General Botany (BOT130, every other semester) and Plant Biochemistry (BOT621, spring semester, odd-numbered years).

My lab provides a research environment in which all levels of junior scientists (undergraduate and graduate students, post-doctoral associates) can learn various techniques in molecular biology/biochemistry and also develop critical scientific thinking skills, which are required to succeed in both academic and non-academic careers. If you are interested in studying plant metabolism and physiology in the lab, please contact me at maeda2@wisc.edu.


Selected Recent Publications: (For a complete list of publications, click here.)

Maeda H and Dudareva N (2012) The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Ann. Rev. Plant Biol. Vol. 63

Maeda H, Yoo H, and Dudareva N (2011) Prephenate Aminotransferase Directs Plant Phenylalanine Biosynthesis via Arogenate. Nature Chem. Biol., DOI:10.1038/nchembio.485

Maeda H, Shasany AK, Schnepp J, Orlova I, Taguchi G, Cooper BR, Rhodes D, Pichersky E and Dudareva N (2010) RNAi Suppression of Arogenate Dehydratase 1 Reveals That Phenylalanine Is Synthesized Predominantly via the Arogenate Pathway in Petunia Petals. Plant Cell 22, 832-849 *Described as a Research Highlight in Nature Chemical Biology 6, 310

Maeda H
, Sage TL, Isaac G, Welti R, and DellaPenna D (2008) Tocopherols Modulate Extra-Plastidic Polyunsaturated Fatty Acid Metabolism in Arabidopsis at Low Temperature. Plant Cell 20, 452-470 *Described in the Featured Article of the issue Plant Cell 20, 246

Maeda H and DellaPenna D (2007) Tocopherol Functions in Photosynthetic Organisms. Curr. Opin. Plant Biol. 10, 260-265

Maeda H
, Song W, Sage TL and DellaPenna D (2006) Tocopherols Play a Crucial Role in Low Temperature Adaptation and Phloem Loading in Arabidopsis. Plant Cell 18, 2710-2732  *Highlighted on the Cover of the issue.

Maeda H
, Sakuragi Y, Bryant DA, and DellaPenna D (2005) Tocopherols Protect Synechocystis sp. Strain PCC 6803 from Lipid Peroxidation. Plant Physiol. 138, 1422-1435
UW Madison home UW Madison home