Deserts
Deserts

- what are deserts?
- relative term - transitions occur latitudinally with more xeric thorn forests and with grass savannas

Mojave Desert

Namib Desert
Deserts

- what are deserts?
- relative term - high elevation tropical mountains (paramo, etc.) are essentially “desert” like

Haleakala Crater - Maui
Deserts

- what are deserts?
- relative term - high elevation tropical mountains (paramo, etc.) are essentially “desert” like

Opuntia (Cactaceae) in high Andean puna (Peru)
Deserts

- what are deserts?
- subtropical arid regions where potential evaporation (>2000mm) is >> annual precipitation (<200mm)
Deserts

- distinction between **subtropical** and **temperate** (cool or cold winter) deserts

Great Basin

Gobi Desert
Desert Locations

- lie between 15° and 30° centered on Tropics of Cancer and Capricorn on west sides of continents

 Sonoran, Mojave, Chihuahuan

 Atacama
Desert Locations

- lie between 15° and 30° centered on Tropics of Cancer and Capricorn on west sides of continents

Saharan

Namib, Australian
Desert Climate

- desert climate due to subtropical highs and adiabatic warming of dry air...
- ...and circulation of cold currents (holding little moisture above the currents) along west sides of continents
Desert Climate

- variation in amount of precipitation from semiarid to rainless deserts

Mojave

Namib (Skeleton coast)
Desert Climate

- variation in seasonality of precipitation

Mojave - winter rains (Mediterranean!)

Sonoran - light winter rains and heavier summer rain (bimodal)

Chihuahuan - only summer rain (subtropical!)

Namib, Atacama - only fog, no rain
Desert Climate

- soil types: counter-intuitive, but clay soils form driest habitats, sandy soils better water retention, and rocky/fissured soils provide the wettest habitats.
Desert Life Forms

- **Halophytes** ("salt plants") - adaptations to salt left behind as water is evaporated at surface of soil

Salt accumulators (often succulent)

Salt excretors

Salicornia (Chenopodiaceae)

Tamarix (Tamaricaceae)
Desert Life Forms

- **Malakophyllus** ("soft leaved") **xerophytes** ("arid plants") - adaptations to water stress by wilting under dry conditions

Asteraceae - daisy family

Sphaeralcea (Malvaceae) - desert globe mallow
Desert Life Forms

- Succulents - adaptations to water stress by storing water in swollen tissue

leaves *Aloe* - Africa

stems *Opuntia* - North America
Desert Life Forms

- **Ephemerals** - adaptations to water stress by short life

Geophytes (survive under ground)

Therophytes (annuals, survive by seeds)
Desert Life Forms

- **Ephemerals** - adaptations to water stress by short life

<table>
<thead>
<tr>
<th></th>
<th>Phanero. (trees/shrubs)</th>
<th>Chamae. (near ground)</th>
<th>Hemicrypto (leaf litter)</th>
<th>Crypto. (under ground)</th>
<th>Thero. (annuals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainforest</td>
<td>96%</td>
<td>2%</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Desert</td>
<td>11%</td>
<td>7%</td>
<td>27%</td>
<td>14%</td>
<td>41%</td>
</tr>
<tr>
<td>Temperate Deciduous Forest</td>
<td>15%</td>
<td>2%</td>
<td>49%</td>
<td>22%</td>
<td>12%</td>
</tr>
<tr>
<td>Tundra</td>
<td>0%</td>
<td>23%</td>
<td>61%</td>
<td>15%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Desert Life Forms

- Plant defenses - physical and chemical

Table 4.13 The physical and chemical defences of desert plants against herbivores (after Orians et al., 1977)

<table>
<thead>
<tr>
<th>Life form</th>
<th>Physical defences</th>
<th>Chemical defences</th>
</tr>
</thead>
<tbody>
<tr>
<td>ephemerals</td>
<td>leaves easily chewed; no spines</td>
<td>toxins</td>
</tr>
<tr>
<td>root perennials</td>
<td>leaves easily chewed; no spines</td>
<td>toxins</td>
</tr>
<tr>
<td>deciduous perennials</td>
<td>leaves easily chewed; may have spines</td>
<td>toxins; digestion-reducing substances</td>
</tr>
<tr>
<td>evergreen perennials</td>
<td>leaves tough; usually not spinescent</td>
<td>toxins; digestion-reducing substances</td>
</tr>
<tr>
<td>succulents</td>
<td>photosynthetic tissue very tough; many spines</td>
<td>digestion-reducing substances; low nutrient content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long-lived tissues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>toxins; digestion-reducing substances; low nutrient content</td>
</tr>
</tbody>
</table>

Cactaceae - New World spine protected

Euphorbia - Old World spine & toxin protected
Desert Life Forms

- Plant defenses - physical and chemical

Table 4.13 The physical and chemical defences of desert plants against herbivores (after Orians et al., 1977)

<table>
<thead>
<tr>
<th>Life form</th>
<th>Physical defences</th>
<th>Short-lived tissues</th>
<th>Long-lived tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td>ephemerals</td>
<td>leaves easily chewed; no spines</td>
<td>toxins</td>
<td>digestion-reducing substances</td>
</tr>
<tr>
<td>root perennials</td>
<td>leaves easily chewed; no spines</td>
<td>toxins</td>
<td>toxins; digestion-reducing substances; low nutrient content</td>
</tr>
<tr>
<td>deciduous</td>
<td>leaves easily chewed; may have spines</td>
<td>toxins; digestion-reducing substances</td>
<td>toxins; digestion-reducing substances; low nutrient content</td>
</tr>
<tr>
<td>perennials</td>
<td>leaves tough; usually not spinescent</td>
<td>toxins; digestion-reducing substances</td>
<td>toxins; digestion-reducing substances; low nutrient content</td>
</tr>
<tr>
<td>evergreen</td>
<td>photosynthetic tissue very tough; many spines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>succulents</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Larrea tridentata
– Creosote bush
Desert Florisitics

- Three families species richer in deserts than elsewhere
Desert Florisitics

- Three families species richer in deserts than elsewhere

Frankeniaceae

Frankenia chilensis
African Deserts

- Sahara

Yellow indicates lowest photosynthetically absorbed radiation
African Deserts

- Sahara

Woody plants: *Phoenix* (date palm) and shrubs (*Acacia, Tamarix, Ephedra*)

Annuals: Brassicaceae; but also perennial herbs like grasses

“mustard” (Brassicaceae) *Phoenix dactylifera* (date palm) - Tunisia
African Deserts

- Sahara

Stem succulents:
Apocynaceae (milkweeds)

Caralluma & Sarcostemma
(Apocynaceae)
Ethiopia

Loranthaceae parasitic on *Acacia*
Ethiopia

Parasites: Loranthaceae
African Deserts

- Namib - western southern Africa
African Deserts

- Namib - western southern Africa

Fog desert: fog only moisture for most of the year along coast

![Image of a Darkling beetle - dew specialist](image)

FOG OVER THE DESERT

Billowing curtains of fog form as warm, damp Atlantic air condenses over the icy Benguela Current, which travels up from the Antarctic Ocean. In early morning, the fog spreads inland, bringing precious drops of moisture to the barren desert.
African Deserts

- Namib - western southern Africa

Fog desert: fog only moisture for most of the year along coast

- *Welwitschia mirabilis*
 - nephelophyte - fog specialists

- Darkling beetle - dew specialist
African Deserts

- Namib - western southern Africa

Errospermum paradoxum

- nephelophyte - fog specialists of Namaqualand - the “curlie-whirlies”

Trachyandra
African Deserts

- **nephelophyte** - fog specialists of Namaqualand - the “curlie-whirlies”

Trachyandra
African Deserts

Desert geophytes under dew and fog: The “curly-whirlies” of Namaqualand (South Africa)

Stefan Vogel¹, 2, Ute Müller-Doblieb ³

¹ Institut für Botanik der Universität Wien, A-1090 Vienna, Austria
² Institut für Biologie, Systematische Botanik und Pflanzengeographie der Freien Universität Berlin, D-14195 Berlin, Deutschland, Germany
African Deserts

- Namib - western southern Africa

Stem succulents: *Aloe* (Liliaceae s.l.), *Euphorbia*, *Pachypodium* (Apocynaceae)

Aloe - quiver plant

Pachypodium
African Deserts

- Namib - western southern Africa

Stem succulents: *Stapelia* (Apocynaceae) - cactus mimic; *Adenia* (Passifloraceae)

Stapelia - carrion flower

Adenia
African Deserts

- Namib - western southern Africa

Leaf succulents:
Aizoaceae - cactus mimics

Delospermum

Lithops - living stones
Australian Deserts

- One quarter of Australia is “desert” - largest is the Simpson desert.
Spinifex desert type: desert grassland dominated by *Triodia* grass hummocks
Australian Deserts

- **Spinifex** desert type: desert grassland dominated by *Triodia* grass hummocks

Casuarina - desert oak - N2 fixing!

Grass trees, *Xanthorrhoeaceae* (endemic to Australia, 9 genera, 75 spp.)
Australian Deserts

- **Saline** desert type: low vegetation dominated by salt-tolerant bluebush, saltbush, and other Chenopodiaceae

Maireana (Amaranthaceae) - bluebush

Williams Creek - saline
Australian Deserts

- **Mulga** desert type: perhaps transitional with extreme arid woodlands but covers 20% of Australia - dominated by *Acacia aneura* (mulga)

Acacia aneura - mulga
South American Deserts

- Atacama - w Chile & SW Peru - straddles Tropic of Capricorn on Pacific Ocean edge of SAmerica
- essentially a rainless desert in the shadow of the Andes
South American Deserts

- Atacama - w Chile & SW Peru - straddles Tropic of Capricorn on Pacific Ocean edge of SAmerica

- a fog desert: note moisture laden clouds over cold Humboldt current stop at edge of continent
South American Deserts

- Atacama - w Chile & SW Peru - straddles Tropic of Capricorn on Pacific Ocean edge of SAmerica

- a fog desert: note moisture laden clouds over cold Humboldt current stop at edge of continent

- orographic precipitation is always inland at higher elevations due to adiabatic effect

Coastal cloud wall in Pan de Azucar
South American Deserts

- Atacama - western Chile & southwestern Peru - straddles Tropic of Capricorn on Pacific Ocean edge of South America

- rainless desert with plants (*nephelophytes*) adapted to capture fog moisture as *lomas* (small hill) vegetation

Tillandsia landbeckii (Bromeliaceae) - same genus as Spanish moss
South American Deserts

Eulychnia iquiquensis (Cactaceae), *Copiapoa* (Cactaceae) & *Euphorbia latifolia* (Euphorbiaceae)
South American Deserts

Malesherbia tocopillana (Malesherbiaceae) - family of 1 genus and 24 species restricted to west coast of South America
South American Deserts

- Patagonian - temperate desert formed by rainshadow of Andes
North American Deserts

- 4 recognized: variation in seasonality of precipitation
 - **Great Basin** - cold winter desert (temperate, montane rain shadow)
 - **Mojave** - winter rains (Mediterranean!)
 - **Sonoran** - light winter rains and heavier summer rain (bimodal)
 - **Chihuahuan** - only summer rain (subtropical!)

- floristically related & intergrade
North American Deserts

- Chihuahuan - subtropical
North American Deserts

- Chihuahuan

Larrea tridentata (Zygophyllaceae)
creosote bush - also in South America

Yucca
North American Deserts

- Chihuahuan

Acacia constricta - white thorn acacia

Flourensia cernua (Asteraceae) tarbush
North American Deserts

- Chihuahuan

Ariocarpus (Cactaceae) - Big Bend National Park, Texas

Gran Desierto del Pinacate National Park, Mexico - sand verbena (*Verbena*) & creosote
North American Deserts

- Sonoran - subtropical/Mediterranean - divided into floristic/climatic subgroups

Carnegiea gigantea (Cactaceae) - saguaro “Queen of the Sonoran”
North American Deserts

- Sonoran

Cereus thurberi - organpipe *Opuntia bigelovii* - chollo
North American Deserts

- Sonoran

Cercidium microphyllum (Fabaceae) - palo verde
North American Deserts

- Sonoran

Prospis glandulosa (Fabaceae) - mesquite (pinole)
North American Deserts

- Sonoran

Fouquieria splendens (Fouquieriaceae) - ocotillo
Sonoran

Agave

Ambrosia dumosa (Asteraceae)- bursage

Ephedra viridis - Mormon tea

Fouquieria columnaris - boojum (Baja)

North American Deserts
North American Deserts

- Sonoran

Simmondsia chinensis — *Simmondsiaceae*
Sonoran Desert endemic

![Image of Sonoran Desert plant](image-url)
North American Deserts

- Sonoran - two rainy seasons produces diverse annual species
North American Deserts

- Mojave - Mediterranean (winter rain) cooler desert

Elements from the Californian Mediterranean flora are seen, but a good number of endemic species
North American Deserts

- Mojave

Yucca brevifolia, Joshua Tree National Park

Yucca sp.
Issues in Biogeography of Deserts

- Evolution of Desert Floras
 1. Geological evidence arid times since Devonian (400mya)
 2. Axelrod (1958) - desert flora originated in Miocene (24mya) and Pliocene (2.5mya)
 3. Schmida (1985) and Whittaker (1977): distinctive life forms and species diversity in desert indicate even more ancient

Distribution of sand deserts

19K ya

today
Issues in Biogeography of Deserts

- **Floristic Relationships**

 Strong links within floristic areas

 Weak links between floristic areas except N-S movement

[Image of Creosote bush in North and South America]
Issues in Biogeography of Deserts

- Floristic Relationships

DNA evidence for very recent long distance dispersal of Senecio mohavensis across Atlantic

Senecio mohavensis subsp. mohavensis

DNA family history
Issues in Biogeography of Deserts

- Invasives

Tamarisk invasive in Chihuahuan Desert (Big Bend National Park) - native to African deserts